Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor.

نویسندگان

  • R N Pattison
  • J Swamy
  • B Mendenhall
  • C Hwang
  • B T Frohlich
چکیده

At high viable cell concentrations in large-scale mammalian cell culture processes, the accumulation of dissolved carbon dioxide (dCO(2), typically quantified as an equilibrium gas-phase concentration) becomes problematic as a result of low CO(2) removal rates at reduced surface-to-volume ratios. High dCO(2) concentrations have previously been shown to inhibit cell growth and product formation in mammalian cells and to alter the glycosylation pattern of recombinant proteins. Therefore, reliable monitoring and control of dCO(2) are important for successful large-scale operation. Off-line measurements by instruments such as blood gas analyzers (BGA) are constrained by the low frequency of data collection and cannot be used for on-line control. In a preliminary evaluation of the YSI 8500 in situ sensor, a response time (t(90%)) of 6 min, sensitivity of 0.5% CO(2) (3.6 mmHg), and linearity of measurement (R(2) = 0.9997) between the equivalent gas-phase partial pressure of 0-180 mmHg (0% and 25% CO(2)) were established. Measurements were found to be unaffected by culture pH and typical mammalian cell culture concentrations of glucose, glutamine, glutamate, lactate, and ammonium. The sensor withstood repeated sterilization and cleaning cycles. The reliability of this sensor was demonstrated in microcarrier-based Chinese hamster ovary (CHO) cell perfusion cultures at reactor scales of 30, 40, 340, and 2000 L and was successfully implemented in a dCO(2) control strategy using N(2) sparging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide

Nanocomposites containing poly(methyl methacrylate) (PMMA) and surface functionalized Multi-Walled Carbon Nanotubes (MWNTs) were synthesized. The dispersion of MWNTs in PMMA was characterized using Transmission Electron Microscopy (TEM).The synthesized nanocomposites were successfully foamed using a simple method based on the in-situ generation of supercritical carbon dioxide (CO2</sub...

متن کامل

Measurement and Modeling of Acridine Solubility in Supercritical Carbon Dioxide

Supercritical carbon dioxide has gained increasing attention in food and pharmaceutical processing owing to the fact that it is environmentally inexpensive, not flammable, essentially non-toxic, and it has a convenient critical point. Also, it has been attracting much attention in many fields, such as extraction of sensitive materials and pharmaceutical processing and polymerization processes. ...

متن کامل

Fiber-Optic Fluorescence Carbon Dioxide Sensor for Environmental Monitoring

Fiber-optic sensors were developed for monitoring dissolved carbon dioxide in water samples in the 0 to 900 ppm concentration range. A pH-sensitive fluorescent dye (HPTS) was reacted with a cationic quaternary ammonium salt to form an ion pair which was electrostatically bound to the surface of particles of aminocellulose which then were dispersed into a gas-permeable silicone polymer. The gree...

متن کامل

Fabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution

In this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. Aqueous solution of 1-methyl-2-pyrrolidine (NMP) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. The morphology of fabricated membranes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2000